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Symmetries of spacetime manifolds which are given by Killing vectors are compared
with the symmetries of the Lagrangians of the respective spacetimes. We find the point
generators of the one parameter Lie groups of transformations that leave invariant
the action integral corresponding to the Lagrangian (Noether symmetries). In the ex-
amples considered, it is shown that the Noether symmetries obtained by considering
the Larangians provide additional symmetries which are not provided by the Killing
vectors. It is conjectured that these symmetries would always provide a larger Lie
algebra of which the KV symmetres will form a subalgebra.
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1. INTRODUCTION

The Einstein field equations which govern the general theory of relativity
(GR) are described in terms of the 4-Lorentzian metric gab and are highly non-linear
equations. It has therefore been one of the fundamental problems in GR to find
and understand solutions of the Einstein field equations through the symmetries
they possess, see Meisner et al. (1973). These symmetries are given by Killing
vectors (KVs): a KV is the one along which the Lie derivative of the metric is zero.
Since these symmetries are pivotal to understand the physics of the gravitational
fields, they have been throughly investigated and by now a large body of literature
is available on them (Petrov, 1969). As fas as the KVs are concerned, they form
a finite dimensional Lie group for the spacetime metric being non-degenerate.
On the one hand the metric conservation laws are pivotal to study the symmetry
groups admitted by them, there are other tensors of more physical interest whose
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symmetries are wroth investigating. These tensors are given by Ricci and Riemann
tensors and are fundamentally different from the metric tensor for their being
degenerate unlike the metric tensor (Bokhari, 1992). The symmetries of these
tensors are generally known as Ricci (RC) and curvature (CC) collineations. It is
well known that the RC symmetry forms a larger symmetry group compared with
that of the KV or the CC groups even when the RC symmetry is finite. In-fact what
is known is that whereas every KV is a CC and every CC is a RC, the converse is not
true in general (i.e. KV ⊇ CC ⊇ RC). All these symmetries apart from some other
have been widely investigated and studied in comparison with each other. These
investigations have not only yielded interesting group theoretic understanding of
the symmetries but nice additional physical understanding is also achieved.

With the above point in mind a question arises that “are KVs, RCs and CCs etc
the entire symmetries enough to understand GR or could there be other candidates
also which might add to some physics not provided by either of the well known
symmetres?” It will be of physical interest if such symmetries are investigated
and found to form “different” Lie algebras from the “conventional” ones. There
exists a nontrivial connection between the structure of the spacetime manifold
and the differential equations which are defined by the Euler-Lagrange (geodesic)
equations. This system of differential equations are, in turn, connected to various
symmetry generators defining transformations of the equations. In particular, the
one parameter Lie groups of transformations of the equations are well known and
their uses in the analysis of the differential equation like reduction and linearization
is well established. Recently, an attempt has been made to establish a connection
between differential equations and spacetime manifolds. It has been suggested that
this relationship exists via the notions of Lie symmetries of the geodesic equations
and isometries of the manifold (Feroze et al.).

In this paper, we show that a stronger and more significant connection is
defined by the transformations that leave invariant the action integral correspond-
ing to the above Lagrangian and the isometries of the manifold. These Noether
symmetries form a subalgebra of the Lie symmetries and double reduction of
differential equations (see Olver, 1986; Stephani, 1989; Kara et al., 1994). This
implies that these symmetries are closely linked to the geodesic equations and
therefore are worth understanding more clearly. More significantly, they have far
reaching physical value. For example, each Noether symmetry give rise to a con-
servation law via the celebrated Noether’s theorem (Noether, 1918) (see Stephani,
1989 for some indications but do not contain detailed studies). Of further interest
to the Inverse Problem is that given a system of equations representing geodesics,
what kind of underlying manifold arises and, also, in the case of non unique
Lagrangians with “different” Lie algebra of Noether point symmetry generators,
what is the relationship, if any, of the underlying manifolds associated with the
given system (see Khesin, 2005).
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We note here that as far as second-order scalar (ordinary) differential
equations (odes) are concerned, the classifications of the corresponding first-order
Lagrangians are complete (Kara, Mahomed, and Leach, 1994).

We briefly state some of the features of an Euler Lagrange system of des.
Consider an rth-order system of partial differential equations of n independent
and m dependent variables, viz.,

Eβ
(
x, u, u(1), . . . , u(r)

) = 0, β = 1, . . . , m̃. (1.1)

A conservation law of (1.1) is the equation

DiT
i = 0, (1.2)

on the solutions of (1.1). Here the total differentiation operator is

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , i = 1, . . . , n.

The tuple T = (T 1, . . . , T n) is called a conserved vector of (1.1).
Suppose A is the universal space of differential functions. A Lie-Bäcklund

operator is given by

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ . . . , (1.3)

where ξ i, ηα ∈ A and the additional coefficients are

ζ α
i = Di(W

α) + ξ juα
ij ,

ζ α
i1i2

= Di1Di2 (Wα) + ξ juα
ji1i2

, (1.4)

...

and Wα is the Lie characteristic function defined by

Wα = ηα − ξ juα
j . (1.5)

In this paper, we will assume that X is a Lie point operator, i.e., ξ and η are
functions of x and u and are independent of derivatives of u.

The Euler-Lagrange equations, if they exist, associated with (1.1) are the
system δL/δuα = 0, α = 1, . . . , m, where δ/δuα is the Euler-Lagrange operator
given by

δ

δuα
= ∂

∂uα
+

∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂uα
i1···is

, α = 1, . . . , m. (1.6)
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L is referred to as a Lagrangian and a Noether symmetry operator X of L arises
from a study of the invariance properties of the associated functional

L =
∫

�

L
(
x, u, u(1), . . . , u(r)

)
dx (1.7)

defined over �. If we include point dependent gauge terms f1, . . . , fn, the Noether
symmetries X are given by

XL + LDiξi = Difi. (1.8)

Corresponding to each X, a conserved vector T = (T 1, . . . , T n) is obtained
via Noether’s Theorem.

For our purposes, the Lagrangian is obtained directly from the metric which
gives rise to the geodesic equations.

2. NOETHER SYMMETRIES/ALGEBRAS OF GEODESIC EQUATIONS

Example 1 (Illustrative)
As an illustrative case, consider the well known Lagrangian

L = ṙ2 + r2θ̇2 (2.1)

where the dot represents derivative with respect to the arc length parameter “s”. In
this case, we suppose the form of the vector field X to be σ ∂

∂s
+ φ ∂

∂θ
+ ρ ∂

∂r
and

substitution in (1.8) leads to, after separation of monomials, the following linear
system

θ̇3 : −σθr
2 = 0

ṙ3 : σr = 0

θ̇2 : 2ρ + 2rφs − rσs = 0

ṙ2 : 2ρr = σs (2.2)

θ̇ ṙ : ρt = −2r2φr

θ̇ : 2r2φs = fs

ṙ : 2ρs = fr

1 : fs = 0

With some manipulation we get

σ = σ (s)

ρ = 1

2
σsr + α(s, θ ) (2.3)

φ = 1

2r
αθ + (

¯
s, θ )
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where, it turns out, β = β(s), αθθ + 2α = 0 so that α = A(s) cos
√

2θ +
B(s) sin

√
2θ and f = 0. With further analysis we obtain

σ = b1s + b2

ρ = 1

2
rb1 + k2 cos

√
2θ + k4 sin

√
2θ (2.4)

φ = 1

2r

√
2[k2 cos

√
2θ − k4 sin

√
2θ ] + c2

We, thus, have five-dimensional algebra of Noether symmetries with basis

X1 = ∂
∂θ

, X2 = ∂
∂s

, X3 = s ∂
∂s

+ 1

2
r

∂

∂r

X4 = − 1√
2r

sin
√

2θ
∂

∂θ
+ cos

√
2θ

∂

∂r
,X5 = 1√

2r
cos

√
2θ

∂

∂θ
+ sin

√
2θ

∂

∂r
,

and

[X1, X2] = [X1, X3] = 0, [X1, X4] = −√
2X5, [X1, X5] = √

2X4

[X3, X2] = −X2, [X4, X2] = [X5, X2] = 0,

[X3, X4] − 1
2X4, [X3, X5] = − 1

2X5, [X4, X5] = 0.

Notes.

1. Each of these leads to a conservation law via the celebrated Noether’s
theorem.

2. As far as the Killing vectors of the two dimensional metric in polar
coordinates

ds2 = dr2 + r2dθ2 (2.5)

are concerned, we have

cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ
, sin θ

∂

∂r
+ 1

r
cos θ

∂

∂θ
,

∂

∂θ

Comparing, it can be seen that the Killing vectors of the metric form a proper
sub set of the Noether symmetries . In-fact the Noether symmetries provides
two additional symmetry generators. This inclusion of additional symmetries
may be of interest in gaining further insight in situations of physical interest.
In fact, X2 from corresponds to translation in s and X3 corresponds to dila-
tion and together with the conserved quantity obtained by Noether’s theorem
is useful, inter alia, in the double reduction of the geodesic (Euler Lagrange)
equations.
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Example 2
The metric

ds2 = g(r)dt2 − 1

g(r)
dr2 − (r2dθ2 + r2 sin2 θdφ2) (2.6)

with Lagrangian given by

L = g(r)ṫ2 − 1

g(r)
ṙ2 − r2θ̇2 − r2 sin2 θφ̇2 (2.7)

where g = 1 − 2m
r

, m a constant, is a four-dimensional Lorentzian metric admit-
ting spherical and static symmetry. It is a non-flat vacuum solution of the Einstein
equations (see Bokhari, Kashif and Qadir).

We suppose the Noether point symmetry generator to be of the form

X = σ
∂

∂s
+ τ

∂

∂t
+ ρ

∂

∂r
+ J

∂

∂θ
+ F

∂

∂φ
.

Substituting in (1.8) leads to

ρ

[
2m

r2
ṫ2 + 2m

(r − 2m)2 ṙ2 − 2rθ̇2 − 2r sin2 θφ̇2

]
+ J [−2r2 sin θ cos θφ̇2]

+ 2

(
1 − 2m

r

)
ṫ(τs + ṫ τt + ṙτr + θ̇ τθ + φ̇τφ)

− 2ṫ2

(
1 − 2m

r

)
(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

− 2r

r − 2m
ṙ(ρs + ṫρt + ṙρr + θ̇ρθ + φ̇ρφ)

+ 2r

2 − 2m
ṙ2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

− 2r2θ̇ (Js + ṫJt + ṙJr + θ̇Jθ + φ̇Jφ)

+ 2r2θ2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

− 2r2 sin2 θφ̇((Fs + ṫFt + ṙFr + θ̇Fθ + φ̇Fφ)

+ 2r2 sin2 θφ̇2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

+
(

1 − 2m

r

)
ṫ2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

− r

r − 2m
ṙ2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)
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− r2θ̇2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

− r2 sin2 θφ̇2(σs + ṫσt + ṙσr + θ̇σθ + φ̇σφ)

= fs + ṫft + ṙfr + θ̇fθ + φ̇fφ. (2.8)

The separation by monomials lead to fs = 0 and

σ = σ (s),

ρ
2m

r2
+ 2

(
1 − 2m

r

)
τt −

(
1 − 2m

r

)
σs = 0,

ρ
2m

(r − 2m)2
− ρr

2r

(r − 2m)
+ r

(r − 2m)
σs = 0,

−2ρr − 2r2Jθ + r2σs = 0,

ρ(−2r sin2(θ ) − 2J r2 sin(θ ) cos(θ ) − 2r2 sin2(θ )Fφ + r2 sin2(θ )σs = 0,

2

(
1 − 2m

r

)
τr − 2r

r − 2m
ρt = 0,

2

(
1 − 2m

r

)
τθ − 2r2Jt = 0,

2

(
1 − 2m

r

)
τφ − 2r2 sin2(θ )Ft = 0, (2.9)

− 2r

r − 2m
ρθ − 2r2Jr = 0,

− 2r

r − 2m
ρφ − 2r2 sin2(θ )Fr = 0,

−2r2Jφ − 2r2 sin2(θ )Fθ = 0,

fs = 0,

2

(
1 − 2m

r

)
τs = ft ,

− 2r

r − 2m
ρs = fr,

−2r2Js = fθ ,

−2r2 sin2(θ )Fs = fφ
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It is clear that solving this system can be tedious. However, we list a subalgebra
that arises, viz.,

X1 = ∂
∂s

,X2 = ∂
∂t

,X3 = cos φ
∂

∂θ
− cot θ sin φ

∂

∂φ
,

X4 = sin φ
∂

∂θ
+ cot θ cos φ

∂

∂φ
,X5 = ∂

∂φ
(2.10)

The nonzero commutators are

[X3, X4] = −X5, [X4, X5] = −X3, [X3, X5] = X4 (2.11)

Example 3
We now attempt the Noether symmetries of the Lagrangian for a 4-

dimensional Lorentzian (Minkowski) metric. This is a spacetime admitting max-
imal KV and arbitrary RC and CC symmetry: arbitrary RC and CC symmetry
because the spacetime is flat and all the Ricci and Riemann tensor components for
it are zero. The spacetime metric has the form

ds2 = cosh

(
x

a

)
dt2 − dx2 − (dy2 + dz2) (2.12)

To determine its Noether symmetries we use the Lagrangian given by

L = cosh

(
x

a

)
ṫ2 − ẋ2 − ẏ2 − ż2 (2.13)

in (1.8) with point symmetry generator X = σ ∂
∂s

+ T ∂
∂t

+ Y ∂
∂y

+ ζ ∂
∂z

and f =
f (s, t, x, y, z), i.e.,

X [1]

(
cosh

(
x

a

)
ṫ2 − ẋ2 − ẏ2 − ż2

)
+

(
cosh

(
x

a

)
ṫ2 − ẋ2 − ẏ2 − ż2

)
Dsσ = Dsf .

(2.14)

Separating by the respective monomials, we get the following nontrivial
system of linear pdes

ṫ3 : − cosh2

(
x

a

)
σt = 0

ẋ3 : −σx = 0

ẏ3 : −σy = 0

ż3 : −σz = 0

ṫ2 :
2

a
cosh

(
x

a

)
sinh

(
x

a

)
X + 2 cosh2

(
x

a

)
Tt − cosh2

(
x

a

)
σs = 0

ẋ2 : 2Xx − σs = 0
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ẏ2 : 2Yy − σs = 0

ż2 : 2ζz − σs = 0

ṫ ẋ : Xt = cosh2

(
x

a

)
Tx

ṫ ẏ : Yt = cosh2

(
x

a

)
Ty (2.15)

ṫ ż : ζt = cosh2

(
x

a

)
Tz

ẏẋ : −Xy = Yx

żẋ : −Xz = ζx

ẏż : −Yz = ζy

ṫ: 2 cosh2

(
x

a

)
Ts = ft

ẋ : −2Xs = fx

ẏ : −2Ys = fy

ż : −2ζs = fz

1 : fs = 0

Concentrating on the forms of the Noether symmetries X we get after some
tedious calculations (the forms of the corresponding gauge functions f can be
determined from the last five equations in (2.16) which are needed if one requires
the conserved quantities via Noether’s theorem),

T = tanh

(
x

a

)[
e0 cos

(
t

a

)
− e2 sin

(
t

a

)
+ D1(y, z)

]

X = e2 cos

(
t

a

)
+ e0 sin

(
t

a

)
+ e5

Y = b1(s, y, z)t + b2(s, y, z) (2.16)

ζ = c1(s, y, z)t + c2(s, y, z)

σ = e1

where the ei’s are constants and

D1
y = b1, D1

z = c1, c1
y = −b1

z , c2
y = −b2

z .
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Thus, we get

X1 = tanh

(
x

a

)
cos

(
t

a

)
∂

∂t
+ sin

(
t

a

)
∂

∂x

X2 = − tanh

(
x

a

)
sin

(
t

a

)
∂

∂t
+ cos

(
t

a

)
∂

∂x

X3 = ∂

∂x

X4 = ∂

∂s

X∞ = D1 ∂

∂t
+ (b1t + b2)

∂

∂y
+ (C1t + c2)

∂

∂z

Without further analysis, we are in a position to list some of the Noether symmetries
as a consequence of X∞, for e.g.,

D1 = 1:
∂

∂t

D1 = y: y
∂

∂t
+ t

∂

∂y

D1 = z: z
∂

∂t
+ t

∂

∂z

b2 = y, c2 = z: y
∂

∂y
+ z

∂

∂z
(2.17)

b2 = z, c2 = −y: z
∂

∂y
− y

∂

∂z

b2 = 1:
∂

∂y
y

c2 = 1:
∂

∂z

where, respectively, these are time translation, Lorentz rotation in y, Lorentz
rotation in z, dilation in y − z, rotation in y − z, translation in y and translation
in z.

3. CONCLUSIONS

We have shown that the Killing vectors of the metric form a subalgebra of
the Noether symmetries arising from the “usual” Lagrangian. This has a number
of implications on finding solutions to some unsolved problems. For example,
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the study of the symmetry relationship between differential equations and the
underlying manifolds has only recently begun; the algebra of symmetries certainly
has bearing on this study. Secondly, whilst it is well known that the algebra of
Noether symmetries form a subalgebra of Lie point symmetries of a differential
equations, there always existed the question of the non uniqueness of Lagrangians
of differential equations. That is, what is the relationship between the “unification”
of the various Noether algebras that arise and the Lie algebra of point symmetries
of the Euler-Lagrange equations?
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